
Towards Autonomous Navigation and Assembly: 

Infrared Detection
Daniela Puente, Leonel Pena, Saurabh Mishra, Read Sandstrom, Nancy M. Amato

What is Motion Planning? The Goal of the Project

• Motion Planning is the 

problem of finding a 

collision-free path from 

a start to goal 

configuration.

• Generates random 

samples to form a 

roadmap, then extracts 

the best valid path.

Infrared (IR) Sensor Setup
Project Setup

Method

• We use the law of 

cosines and basic 

trigonometry to 

find h, Y, and m 

values

• This allows the 

robot to move to 

the center of the 

object precisely

• Robot can accurately 

compute the distance 

between two markers 

and wall

• Robot uses 

trigonometric functions 

to center itself in front 

of the box, facing 

towards it

• Able to successfully 

acquire data from the 

markers e.g., position of 

marker, distance and 

angle to the robot

• Robot can successfully 

push a box forward a 

given distance with a 

margin of error under 

5%

• Robot has a computer mounted on 

top which is in charge of seeing the 

markers and sending back their 

information

• It is in charge of exploring the 

environment and ultimately 

assemble the boxes that form the 

A&M logo

• Markers have unique numbers 

and positions on the boxes and 

environment

• They contain x & y coordinates 

in environment

• Used for robot localization and positioning

• Each contain programmed instructions for 

robot to follow 

• We created a virtual 

representation of the 

actual lab where 

planning takes place

• We placed markers in 

every corner and wall in 

the room

• We gathered x & y 

coordinates as well as 

the angle orientation of 

the markers

• Markers were also placed 

on and around the boxes

• We also measured the x, 

y, and angle orientation 

of markers on boxes

Results

Strict Relaxed
.15 .20.25.30.35

Acknowledgments

Conclusion

We were able to localize, push a 

box to a specified location, and 

dock with the robot. Performance 

was improved by adding a plow 

and refining the tolerance value. 

Future work includes extending 

this method to more complex 

scenarios with multiple objects and 

robots.

This research supported in part by NSF awards

CNS-0551685, CCF 0702765, CCF-0833199, CCF-1439145, 

CCF-1423111, CCF-0830753, IIS-0916053, IIS-0917266, EFRI-

1240483, RI-1217991, by NIH NCI R25 CA090301-11,and by 

DOE awards DE-AC02-06CH11357, DE-NA0002376, B575363.

The work of Pena, Leal, Leal, Rivero, Curran, Rodriguez, 

Zamora, Martinez, performed at the Parasol Lab during Summer 

2016 [and supported in part by the CRA-W Distributed REU 

(DREU) project].

Use Mobile robots to 

position objects by:

• Using visual aid to 

localize the robot and 

boxes

• Planning a path for the 

robot to take

• Finding appropriate 

tool to push objects

• Recharging

autonomously

• The Home Base emits infrared 

signals in fields, including 

left(blue), middle(purple), 

right(orange), and a force 

field(yellow)

• The robot would then use its 

own infrared sensor to locate 

itself within the fields of the 

Home Base

Localize box using 

markers on box and wall

Read box markers and 

calculate rotations and 

translations for centering

Move to center and push 

box based on input 

coordinate

Position robot to a 

neighboring side of the 

box

End

Final 

position?
T

F

Problem: The robot needs to recharge at the Home 

Base after assembly or when needing charge

Experiments:
• Centering: positioning the robot behind the center of mass of an 

object

• Box positioning with and without a planar, pushing surface (plow)

Centering:
• Tested with different tolerances (acceptable range of alignment 

accuracy)

 Strict: Continuous adjustments reveal hardware issues

 Relaxed: Software compromises accuracy to save time

 Optimal: Point where hardware and software issues are 

least severe

Plow vs. No Plow:
• In second operation, X Error decreased with plow

• %Error & Time were reduced with plow

• Unexpected inverse relationship between tolerance and error 

due to hardware downfalls

• We found that the optimal tolerance value 

is .25 because it balances hardware and 

software error


